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ABSTRACT

Both human and automatic processing of speech require recog
In this paper we provide a

nition of more than just words.
brief overview of research on structural metadata extadti the
DARPA EARS rich transcription program. Tasks include detec
of sentence boundaries, filler words, and disfluencies. Nugle
approaches combine lexical, prosodic, and syntactic rimégion,
using various modeling techniques for knowledge sourcegnat
tion. The performance of these methods is evaluated by bgsk,
data source (broadcast news versus spontaneous telepirwes-c
sations) and by whether transcriptions come from humansoor f
an (errorful) automatic speech recognizer. A represemtaam-
ple of results shows that combining multiple knowledge sesr
(words, prosody, syntactic information) is helpful, thedgody is
more helpful for news speech than for conversational spebah
word errors significantly impact performance, and that ritisie
native models generally provide benefit over maximum Iiedid
models. Important remaining issues, both technical angrpro-
matic, are also discussed.

1. INTRODUCTION

Although speech recognition technology has improved 8igni
cantly in recent decades, current speech systems stillibsitpply

a stream of words. This unannotated word stream does notiacl
useful information about punctuation and disfluencies hStiwic-
tural information is important for speech transcripts tohoenan
readable [1]. It is also crucial for effective use of subssgunat-
ural language processing techniques, which are typicaligd on
the assumption of fluent, punctuated, and formatted inpetoR-
ering structural information in speech has thus becomedhéajf

a growing number of studies in computational speech prawgss
e.g.,[2,3,4,5,6,7,8,9, 10, 11]. The metadata extractitiDE)
research effort within the DARPA EARS program [12] aims to
enrich speech recognition output by adding automaticalijgéd
information on the location of sentence boundaries, spdstlu-
encies, and other important phenomena. In this paper, wes foc
automatically detecting structural information in the @atream
(the so-called “structural MDE” portion of the EARS program
other MDE efforts on speaker diarization are overviewed.B].[

Section 4. A summary and discussion of open issues appear in
Section 5.

2. MDE TASKS

2.1. Task Description

Several structural events are annotated in the EARS program
These include: sentence-like units (SUs), edit disfluencad
filler words (see [14] for annotation guidelines). Corresgiog

to these events, the Rich Transcription structural MDE &rark
includes four tasks.

e SU detectioraims to find the end point of an SU. The de-
tection of subtype (statement, backchannel, questiom-or i
complete) for each SU is also required.

¢ Edit word detectionaims to find all words within the
reparandum region of an edit disfluency. These are the
words that will be removed to obtain cleaned-up transcripts

e Filler word detectioraims to identify words used as filled
pauses (e.guh, um), discourse markers (e.qypu know,
like, s9, and explicit editing terms (e.d.mean).

e Interruption point (IP) detectioaims to find the interword
location at which point fluent speech becomes disfluent.
This includes the interruption point inside an edit disflaen
and the starting point of a filler word string.

The following example shows a transcript with metadata
marked: ./’ for statement SU boundaries; >’ for fillers, ‘[ |’
for edit words, and “*' for IPs inside edit disfluencies.

and < uh > < you know > wash your cl ot hes
wherever you are ./ and [ you ] * you really
get used to the outdoors ./

2.2. Performance Measures

Each task is evaluated separately. The NIST scoring toekted
for these tasks first align the reference and hypothesis smard
minimize the word error rate. After alignment, the hypothed
structural events are mapped to the reference events bsngptrd
alignment information, and then unmatched structural &vare

The rest of this paper is organized as follows. We describe counted. For edit and filler word detection, the error ratbésav-

the structural MDE tasks, performance measurement, ampdbicor

erage number of misclassified reference tokens per referedit

for the EARS program in Section 2. Section 3 introduces gen- or filler word token. For SU and IP detection, the error ratthées

eral approaches used for structural MDE. Results are presén

average number of misclassified boundaries per referencerSU
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IP. The error rate in the NIST metric can be greater than 10086 d
to insertions. A detailed description of the scoring togirigvided
at http://www.nist.gov/speech/tests/rt/rt2004/fall/.

Standard tests for the significance of differences betwgen s
tems have only recently been introduced, with NIST repgrtax
sults with the Wilcoxon signed rank test for speaker-levelrage
score differences. While a range of techniques is used i wor
error rate scoring for speech recognition, so far only treakpr-
level test and a pause unit matched pair test have proved! fisef
metadata scoring [15].

A limitation of the standard MDE scoring methods is that they
examine only one operating point out of a range of possisljt
and there may be different false-alarm/missed detectemtetffs
that make sense for downstream language processing appica
Further, most researchers prefer soft decisions, i.eisides with

3. MDE SYSTEM

The MDE tasks can be seen as classification tasks that dagermi
whether an interword boundary is an event boundary (e.g., SU
or IP) or whether a word belongs to an event of interest. Is thi
section, we describe system approaches used for theseatedks
briefly summarize previous work.

3.1. Knowledge Sources

Most of the MDE systems use both textual and prosodic inferma
tion. Typically, at each interword boundary, prosodic tees are
extracted to reflect pause length, duration of words and g#on
pitch contours, and energy contours. These prosodic featne
modeled by a classifier (e.g., a CART decision tree), whictege
ates a posterior probability of an event given the featurassoci-

confidence scores that can be used as weights with other knowl gteq with a boundary. Textual cues are captured by contexiua
edge sources. If confidence scores are given at each interwor formation of words or their corresponding classes or hidénl

boundary, systems can pick the best operating point for tpei
plication. Mechanisms for evaluating the performance eamgng
a decision-error tradeoff (DET) curve or receiver opegthar-
acteristic (ROC) curve are proposed in [15] and [16].

2.3. MDE Corpora

Conversational telephone speech (CTS) and broadcast B&s (
are used for the structural event detection tasks in EARS. &
BN are very different genres. They differ for example in the a
erage SU length and frequency of disfluencies. Speech in BN ha
fewer disfluencies, sentences are longer and more granahatic
and the speakers are mostly professionals reading telgpedm
text. Speech in CTS is more casual and conversational, ioenta
ing many backchannels, filler words, and edit disfluenciesr F
each corpus, two different types of transcriptions are ulsechan-
generated transcription (REF) and speech-to-text retiogrout-
put (STT). Using the reference transcriptions providestest-
case scenario for the evaluation of a structural event tleteal-
gorithm because there are no word errors in the transaniatio

Table 1 shows the distribution of different structural egen
in the two corpora (measured by the percentage of the interwo
boundaries that are labeled with the events), along wittsthe
of the training and testing sets in the most recent Rich Trgms
tion evaluation (RT-04), and the word error rate (WER) ontés
set obtained from the best speech recognition output in ThedR
evaluation (from a multiple system combination). The stats
for the development sets are similar to the eval test setditiad-
ally, there is training data annotated with an earlier wersif the
annotation guideline, but that data is not always used dubeo
changes in the annotation guidelines.

CTS | BN
Training set (number of words) 484K | 182K
Test set (number of words) | 35K | 45K
STT WER (%) 149 | 11.7

SU percentage 13.6 8.1

Edit word percentage 7.4 1.8
Filler word percentage 6.8 1.8

Table 1. Information on the CTS and BN corpora used in the most
recent RT-04 evaluation, including the data set sizes,abegni-
tion WER on the test set, and the percentage of the diffeypetst

of structural events in the training set.

syntactic information. For example, an N-gram language ehod
(LM) can be used to model the joint probabilif(W, E) of the
word and the event sequence. A transformation-based tearni
(TBL) classifier is used in [5, 7] to capture textual knowledgr
disfluency detection.

3.2. Frameworks for Combining Knowledge Sources

An HMM is commonly used to combine the two knowledge
sources (prosodic and textual) [17, 18]. In this framewdhe
transition probabilities are modeled generally by a hiddeent
N-gram LM. Task-specific LMs are often used to model the token
sequences associated with each MDE task. Different LMsdwor
and class based) have also been interpolated [17, 19]. The ob
servation §) probability P(F'|E) is obtained from the prosody
model that generateB(E|F'). Various decoding techniques have
been explored including 1-best Viterbi decoding, posteti&rod-

ing, and forward-backward decoding [8, 18].

Recently, studies using maximum entropy (Maxent) and con-
ditional random fields (CRF) have been conducted, in an attem
to address the weakness of the generative HMM approach(1.7, 2
These approaches directly estimate the posterior protyadilan
event given observations and better match the performamte m
rics. Additionally, they provide more freedom for incorpting
various knowledge sources, especially overlapping featur

CRF and Maxent differ from an HMM with respect to the
training objective function (joint versus conditional dikhood)
and their handling of overlapping word-related featuredvINH
training does not maximize the posterior probabilitieshef tor-
rect label; while the CRF and Maxent models directly estémat
posterior boundary label probabilities. The underlyingfdm se-
quence model of an HMM does not cope well with multiple repre-
sentations of the word sequence (e.g., words, part of spdemh-
ever, the CRF and Maxent models support simultaneous atetel
features. The CRF and HMM differ from the Maxent method with
respect to their ability to model sequence information. Viagent
model only makes decision locally.

3.3. Related Work

Much research has been devoted to automatically detedting s
tural information from text or speech prior to the EARS paogr
Past work has shown that both textual and prosodic cuesdeovi
important information for the detection of sentence bouiedeand
disfluencies. Most of these experiments were conducted mahu
transcriptions, many focused on only one corpus or tasksan



prior studies on disfluency detection relied on the asswnpgtat
sentence boundary information is available. The MDE effotihe
EARS program aims to explore these tasks more extensively, u
ing different corpora and different transcriptions, asrdgferent
tasks. Most important, the main goal is to rely on speech, oiméy

is, using recognition output and without assuming the abdity

of any structural information.

4. SYSTEM PERFORMANCE

Due to space limitations, we focus in the remainder of theepap
on SU/SU-subtype detection and edit detection. We omitrfille
word detection, for which reasonable results can be acthievth
simple text-based classifiers. See [17] for more discussimut
the filler word detection task.

4.1. SU/SU-subtype Detection

The most widely used approach for this task is an HMM com:
bining an N-gram LM and a CART decision tree prosody model.
Since SU boundary events are much rarer than the nonevants, s
pled training sets are generally used to train a decisi@ttrenake

it more sensitive to the inherent properties of the everi§ [tiu

et al. [21] applied bagging and various sampling methods to ob-
tain more reliable posterior probability estimations foe prosody
model. Various textual features (class-based LMs and L&eed
using auxiliary annotated data) are used, in addition totbeel-
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Fig. 1. DET curve for SU detection based on confidence predic-

tions for the CTS reference transcript (lower curve) and 8uiF

put (upper curve).
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affected more by word errors in the recognition output ctbodi
than is the prosody model. Experiments in [17] have also show
that for BN obtaining speaker information from the speakier d

based hidden event LM that is trained from the LDC annotated gyization results generally outperforms using simple kpealus-

training data [17, 18]. In [17], Maxent and CRF models were in
vestigated, both of which use features from N-grams of wards
classes, the binned posterior probabilities from the pipsonodel
and from the LM trained using extra text corpora. Combimaio

tering as implemented for adaptation in speech recognition

To address the issue of higher SU detection errors on recogni
tion output, Hillardet al. [22] extend the SU detection system of
[17] to detect SU boundaries on multiple recognition hypsts.

of these approaches are also used to obtain the SU boundary hyThe getected boundaries for each hypothesis are then cedhbin

potheses. After SU boundaries are detected, a second stegds
to determine the subtype of the SUs using a Maxent classiffigr [

SU boundary error, SU total error
REF 26.21 36.80
CTS | STT 39.18 49.24
REF 47.15 49.71
BN | STT 59.73 61.95

Table 2. Results (%) of SU detection for BN and CTS, on REF
and STT conditions. Subtype substitution errors are ighor¢he
“boundary error” and included in the “total error.”

Table 2 shows SU detection results reported in [17], usieg th
majority vote of the HMM, Maxent, and CRF approaches on CTS,
and the linear posterior probability interpolation of thbIM and
Maxent on BN. The SU error rate is higher on BN, suggesting tha
it is a harder task than CTS. This is partly because BN seatenc
are more complex, and the sparse data problem is more severe f
BN; whereas, in CTS pronouns and backchannels are freqonént a
are good predictors for SU boundary detection. System perfo
mance degrades significantly using the recognition outpilter
than reference transcriptions, as indicated by both deteetrors
in Table 2 and the DET curves in Figure 1. The difference betwe
the SU boundary detection error and the total error (i.e.s8k}
stitution error) is smaller on BN than on CTS since almosSalk
are statements on BN.

Detailed analysis [16] has shown that adding textual infor-
mation, building a more robust prosody model, using coonéi
modeling approaches (Maxent and CRF), and system comtnmnati
all yield performance gains. Additionally, textual infoatron is

using confusion networks and produce a small reductionrior er
for the CTS SU boundary detection task.

4.2. Edit Word Detection

Liu et al.[17] investigated detecting edit words and edit IPs using
three modeling approaches. First, an HMM is used to combiae t
hidden event LM and a prosody model for IP detection. Heigrist
rules are then used to find the onset of the reparandum. Aaepar
repetition detector is used to detect repeated words. $eeon
Maxent classifier is used to find the IP. Then, like the HMM, a
rule-based approach is used to find the extent of the editsvord
Third, a CRF model is implemented that detects the edit regio
and IP jointly. In this model, each word has an associated tag
representing the position of the word in the edit, such aset t
beginning, inside, and outside of an edit. The Maxent and CRF
approaches have shown to generally outperform the HMM fibr ed
word detection.

Edit word error
REF 50.07
CTS | STT 80.41
REF 43.00
BN | STT 89.86

Table 3. Results (%) for edit word detection for BN and CTS on
REF and STT conditions.

Table 3 shows results from [17] for edit word detection, vihic
used the CRF approach for CTS and the Maxent model for BN.
The system degrades even more in the STT condition thandor th



SU task, in part because word fragment information (an itaoor
indicator for edit disfluencies) is unavailable in the STfdition.

In addition, it may be that edit detection relies more on wards
(e.g., repeats) than SU detection. Leasal. [23] used a Tree
Adjoining Grammar for edit word detection, and achieveddyet
results than those shown in Table 3, suggesting that betidein
ing of the correspondences between words in the reparanddm a
corrections in disfluencies may be needed for MDE.

[2]

(31

[4]

5. SUMMARY AND OPEN ISSUES [5]
Finding structural information is important for improvirtgan-
script readability and aiding downstream language praogss
modules. We have provided a brief overview of research on
structural metadata extraction in the DARPA EARS program.
Approaches to automatic detection generally combine déxic
and prosodic information, using various modeling techeifor
knowledge source integration. The performance of thesbodst
is evaluated by MDE task, by data source, and by whether input
transcriptions to the system come from humans or from aworterr
ful) automatic speech recognizer. We have shown reprdsenta
results for the SU and edit tasks. Results show that contpinin
multiple knowledge sources (words, prosody, syntactiorimf-
tion) is helpful, that prosody is more helpful for BN than for'S,
that word errors significantly impact performance (but efiin-
tially for different tasks and corpora), and that discriatine mod-
els generally provide benefit over maximum likelihood medel
While great progress has been made in this area, which con-
stitutes a new direction of research for DARPA, several dpeh-

(6]
(7]

8l

[9]

[10]

[11]

12
nical and programmatic issues remain. On the technica) gite (2
important to continue to search for better features; priosfes-
tures in particular could be improved by using additionaiperal [13]

context. Another issue is to develop better joint modelmgcbn-
tinuous and discrete features. We continue to look for featu

and models that are more robust to word recognition erraist J 4]
modeling of MDE events themselves is yet another technizal f
cus area. Finally, it is important to learn to make use ofialiyt [15]
labeled or unlabeled training data.

On the programmatic side, one issue is how to achieve bet-
ter interannotator agreement, and whether disagreemeuldshe [16]

accounted for during scoring. A second issue is how to assess

significance, since segmentation methods used for asgessid [17]
accuracy may not be appropriate for assessing structueglqph-
ena. Third, should different tasks be scored separatelinter
grated into a joint score? Additional questions concereresibns [18]
to new languages. Finally, researchers in the EARS communit
and beyond are beginning to look into the complex interadbie-

tween speech recognition, MDE, and downstream procesging a [29]
plications.
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